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Clarification on HWs / Exams

Future homeworks will be less workloaded
The bitter lesson is HW difficulty is always positively correlated with reward

Exams will be easier than HWs (different formats)
No point to make exams difficult

No worry on GPAs as long as you are trying to learn and write the
homework yourself



Discriminative vs. Generative Learnin

Cat Y p(y)

Generative | p(x|y)

Discriminative




Generative Model Examples

ONCORD




Video Generation Examples

Prompt: A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city
signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She
wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective,

creating a mirror effect of the colorful lights. Many pedestrians walk about.




Video Generation Examples

Prompt: Photorealistic closeup video of two pirate ships battling each other as they sail inside a cup of coffee.




Video Generation Examples

Prompt: A petri dish with a bamboo forest growing within it that has tiny red pandas running around.




Discriminative vs. Generative Learnin

Cat Y p(y)

Generative | p(x|y)

Discriminative




Bayes Rule

p(z|y)p(y)
p(z)

p(x) = ) p.y) = ) px|yp)
Y Y

p(y|r) =

If our goal is to predict y, the distribution is often written as:

p(y|x) e plx|y)p(y)

argmax p(y|r) = argmax P(zly)p(y)
’ v ()

= argmaxp(z[y)p(y)

9



Generative Models Compared to
Discriminative Models

Pros:

Generative models can generate data (generation, data augmentation)

Inject prior information through the prior distribution

May be learned in an unsupervised way when y is not available

Modeling data distribution is a fundamental goal in Al

Cons:

Often underperforms discriminative models on discriminative tasks
because of stronger assumptions on the data
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Gaussian Discriminant Analysis
Model (GDA)

Multivariate Gaussian distribution

p(x; p, X) = (27T)d/12\2‘1 75 €XP (—%(aj — ) Xz~ u)>

Y € R™js the covariance matrix, it is also symmetric positive semi-definite

| 22| denotes the determinant of X
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Examples of Multivariate Gaussian
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Gaussian Discriminant Analysis Model

Binary classification: y € {0,1},x € R
Assumption y ~ Bernoulli(¢)
zly=0 ~ N(ug,X)
zly=1 ~ N(u1, %)

$'(1—¢) "
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p(zly=1) = (27r)d/2\§3|1/2 eXp (—5(33—#1) 2 (5’3—#1))
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Maximum Likelihood Estimation

€(¢7 Mo, K1, E)

— Z 1{y(’&) _

Zizl 1{3/(2) — O}x(z)

2?21 1{y(i) _ 1}3;(2')
Z?’  H{y® =1}

—Z ()—Myo

_:uy()>

1=1

lOg Hp(x(Z)a y(Z)a ¢7 Ho, M1, Z)
1=1

log | | p(z®1y; po, 1, £)p(y?; ).

Why is the decision boundary linear?
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Connection Between GDA and Logistic Regression

Through Bayes rule, we can show that
1

1 + exp(—6Tx)

p( — 1‘567 ¢7 237“’07/“1'1) —

0 = (P, Z, py, py)

p(x|y) is Gaussian I;I> p(y | x) follows logistic regression

p(x|y) is Gaussian gﬁl p(y | x) follows logistic regression

Gaussian Discriminative Analysis model makes stronger assumptions
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Connection Between GDA and Logistic Regression

Gaussian Discriminative Analysis (GDA) model makes stronger assumptions

When x|y does not follow Gaussian in practice, GDA may or may not do well

When x|y does not follow Gaussian and the training data is large, the
method that makes weaker assumptions (logistic regression) will always
do better

When x|y indeed follows Gaussian and the training data is small, the method

that makes stronger assumptions will do well (more data-efficient)
These are intuitions generally applicable to machine learning
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Philosophy Behind Modeling
Assumptions / Priors

When x|y does not follow Gaussian in practice, GDA may or may not do well

When x|y does not follow Gaussian and the training data is large, the
method that makes weaker assumptions (logistic regression) will always

do better

When x|y indeed follows Gaussian and the training data is small, the method
that makes stronger assumptions will do well (more data-efficient)

1. Transformers v.s. LSTMs v.s. CNN. — transformers can be worse on small
data, but stand out with large data (pretraining)

I' 7

2. The famous and bitter lesson from IBM machine translation model: “Every
time | fire a linguist, the model performance goes up” — Frederick Jelinek
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Naive Bayes
Binary classification: y € {0,1}, x is discrete

Consider an email spam detection task, to predict whether the email is
spam or not

How to represent the text?

if an email contains the j-th word of the dictionary, then we will set X; = 1: otherwise, we let X; = 0

-] a
0 aardvark
0 aardwolf vocabulary
€r = . .
1 buy
j : Dimension is the size of the dictionary
0 Zygmurgy
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Email Spam Classification

-1 a
0 aardvark
0 aardwolf o
| Suppose the dictionary has 50000 words,
L buy how many possible x?
i O i .zygmurgy

Naive Bayes assumption: x;'s are conditionally independent given y

Foranyiandj, p(x;|y) = p(x;|y, Xj)
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Email Spam Classification

p(x1, ..., Z50000|Y) Autoregressive

Y, 131)P($3|y, I, iEz) " ‘P($5oooo|y, L1,y ... ,5649999)

= p(z1|ly)p(z2|y)p(Z3]Y) - - - P(T50000|Y)

Parameters

Giy=1 =PX; =1y =1), ¢, =px;=11y=0), ¢,=pQy=1)
50000 x 2 + 1 parameters (dict size is 50000)
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Maximum Likelihood Estimation

n

L(dy, Djly=0, Pjly=1) = Hp(x(i)a y(i))

1=1

Yy He) = 1AyD =1)

> iy H{y® =1} Count the occurrence of x; in spam/
n (8) _ (6) — . .
2im 112" =1AYY =0} o0 snam emails and normalize

> e Hy® =0}
Z?:l 1{3/(2) =1}

n
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Prediction

_ plzly=1)p(y =1)

g
)
|
-
&
|

p(z)

(T pasly = 1)) ply = 1)

(T p(zsly = 1)) ply = 1) + (T, plosly

Naive Classifier
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Laplace Smoothing

What if we never see the word “learning” in training data but “learning”

exists in the test data?

| Suppose the index in the dictionary for
S el =1Ay® =1}

b > oo Hy®W =1} lea rning 1S g
0 Z?:ll{xg‘i)zl/\y(i)zo} p(xq — 1 ‘y _ 1) _ O
jly=0 — _ .
> iy H{y® =0}
y p(xqzl‘y:()):()
ply =1lz) = p(zly = 1)p(y = 1)

p(z)




Laplace Smoothing

Take the problem of estimating the mean of a multinomial random
variable z taking values in {1, ..., k}. Given the independent
observations {z(l), ---,z(”)}

Pj = p(z =7) b = Z?zl 1{Z(i) =7}

(g

U Why adding k to the

- 1+ Z?:l 1{Z(i) — ]} denominator?

7 k+n
) 1Y e =1AyD =1}
In the email spam classification case: = 2+ i Hy® =1}
L3 e = 1Ay = 0)
Pjly=0 =

2+ 2?21 1{?/@ = 0}
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Thank You!
Q& A
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