

COMP 5212

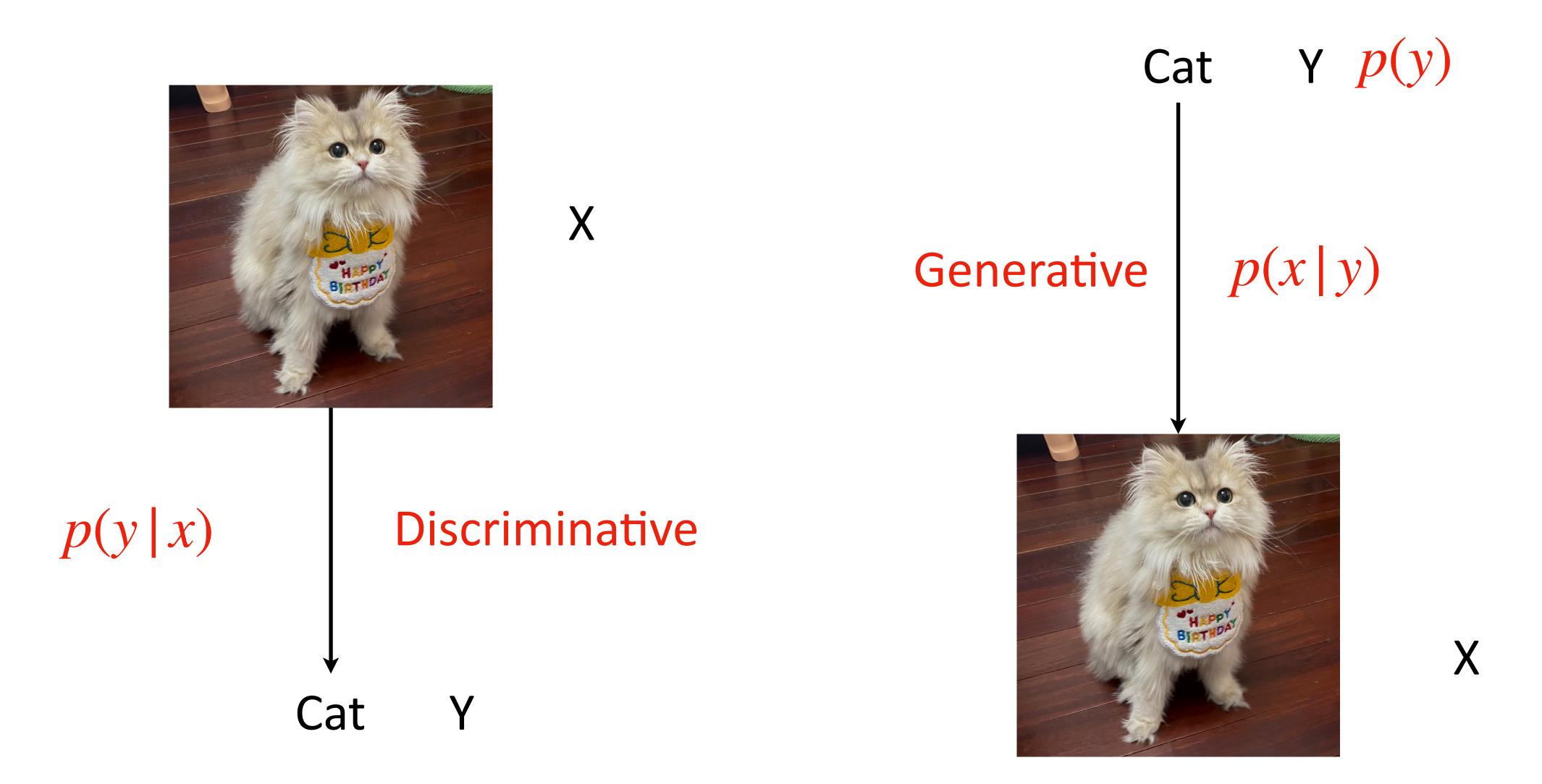
Machine Learning

Lecture 9

Naive Bayes, MLE, MAP

Junxian He Mar 1, 2024

Recap: Generative Models



Recap: Generative Models

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$
$$p(x) = \sum_{y} p(x,y) = \sum_{y} p(x|y)p(y)$$

If our goal is to predict y, the distribution is often written as:

$$p(y|x) \propto p(x|y)p(y)$$

$$\arg \max_{y} p(y|x) = \arg \max_{y} \frac{p(x|y)p(y)}{p(x)}$$

$$= \arg \max_{y} p(x|y)p(y)$$

Recap: Generative Models Compared to Discriminative Models

Pros:

- Generative models can generate data (generation, data augmentation)
- Inject prior information through the prior distribution
- lacktriangle May be learned in an unsupervised way when y is not available
- Modeling data distribution is a fundamental goal in Al

Cons:

Often underperforms discriminative models on discriminative tasks because of stronger assumptions on the data

Naive Bayes

Binary classification: $y \in \{0,1\}, x$ is discrete

Consider an email spam detection task, to predict whether the email is spam or not

How to represent the text?

if an email contains the j-th word of the dictionary, then we will set $x_j = 1$; otherwise, we let $x_j = 0$

$$x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \begin{array}{c} \text{a} \\ \text{aardvark} \\ \text{aardwolf} \\ \text{buy} \\ \vdots \\ 0 \\ \text{zygmurgy} \end{array}$$
 vocabulary

Email Spam Classification

Suppose the dictionary has 50000 words, how many possible x?

Naive Bayes assumption: x_i 's are conditionally independent given y

For any i and j,
$$p(x_i | y) = p(x_i | y, x_i)$$

Email Spam Classification

$$p(x_1, \dots, x_{50000}|y)$$

$$= p(x_1|y)p(x_2|y, x_1)p(x_3|y, x_1, x_2) \cdots p(x_{50000}|y, x_1, \dots, x_{49999})$$

$$= p(x_1|y)p(x_2|y)p(x_3|y) \cdots p(x_{50000}|y)$$

$$= \prod_{i=1}^d p(x_i|y)$$

Parameters

$$\phi_{j|y=1} = p(x_j = 1 | y = 1), \quad \phi_{j|y=1} = p(x_j = 1 | y = 0), \quad \phi_y = p(y = 1)$$

50000 x 2 + 1 parameters (dict size is 50000)

Maximum Likelihood Estimation

$$\mathcal{L}(\phi_y, \phi_{j|y=0}, \phi_{j|y=1}) = \prod_{i=1}^n p(x^{(i)}, y^{(i)})$$

$$\begin{array}{lll} \phi_{j|y=1} & = & \frac{\sum_{i=1}^{n} 1\{x_{j}^{(i)} = 1 \wedge y^{(i)} = 1\}}{\sum_{i=1}^{n} 1\{y^{(i)} = 1\}} & \text{Count the occurrence of } x_{j} \text{ in spam/} \\ \phi_{j|y=0} & = & \frac{\sum_{i=1}^{n} 1\{x_{j}^{(i)} = 1 \wedge y^{(i)} = 0\}}{\sum_{i=1}^{n} 1\{y^{(i)} = 0\}} & \text{non-spam emails and normalize} \\ \phi_{y} & = & \frac{\sum_{i=1}^{n} 1\{y^{(i)} = 1\}}{n} & \end{array}$$

Prediction

$$p(y=1|x) = \frac{p(x|y=1)p(y=1)}{p(x)}$$

$$= \frac{\left(\prod_{j=1}^{d} p(x_j|y=1)\right)p(y=1)}{\left(\prod_{j=1}^{d} p(x_j|y=1)\right)p(y=1) + \left(\prod_{j=1}^{d} p(x_j|y=0)\right)p(y=0)}$$

Naive Classifier

Laplace Smoothing

What if we never see the word "learning" in training data but "learning" exists in the test data?

$$\phi_{j|y=1} = rac{\sum_{i=1}^n 1\{x_j^{(i)} = 1 \land y^{(i)} = 1\}}{\sum_{i=1}^n 1\{y^{(i)} = 1\}}$$
 "learning" is q $\phi_{j|y=0} = rac{\sum_{i=1}^n 1\{x_j^{(i)} = 1 \land y^{(i)} = 0\}}{\sum_{i=1}^n 1\{y^{(i)} = 0\}}$ $p(x_q = 1 \mid y = 1) = 0$

Suppose the index in the dictionary for "learning" is q

$$p(x_q = 1 | y = 1) = 0$$

 $p(x_q = 1 | y = 0) = 0$

$$p(y=1|x) = \frac{p(x|y=1)p(y=1)}{p(x)}$$

$$= \frac{\left(\prod_{j=1}^{d} p(x_j|y=1)\right)p(y=1)}{\left(\prod_{j=1}^{d} p(x_j|y=1)\right)p(y=1) + \left(\prod_{j=1}^{d} p(x_j|y=0)\right)p(y=0)} = \frac{0}{0}$$

Laplace Smoothing

Take the problem of estimating the mean of a multinomial random variable z taking values in $\{1, ..., k\}$. Given the independent observations $\{z^{(1)}, \dots, z^{(n)}\}$

$$\phi_{j} = p(z = j) \qquad \phi_{j} = \frac{\sum_{i=1}^{n} 1\{z^{(i)} = j\}}{n}$$

$$\phi_j = \frac{1+\sum_{i=1}^n 1\{z^{(i)}=j\}}{k+n} \quad \text{denominator?}$$

Why adding k to the

In the email spam classification case:

$$\phi_{j|y=1} = \frac{1 + \sum_{i=1}^{n} 1\{x_j^{(i)} = 1 \land y^{(i)} = 1\}}{2 + \sum_{i=1}^{n} 1\{y^{(i)} = 1\}}$$

$$\phi_{j|y=0} = \frac{1 + \sum_{i=1}^{n} 1\{x_j^{(i)} = 1 \land y^{(i)} = 0\}}{2 + \sum_{i=1}^{n} 1\{y^{(i)} = 0\}}$$

Parameter Estimation: MLE and MAP

Maximum Likelihood Estimation (MLE)

Suppose $p_{data}(x)$ is the real data distribution, $p_{model}(x;\theta)$ is our model parameterized by θ

$$\underset{\theta}{\operatorname{arg\,max}\,}\mathbb{E}_{x\sim p_{data}(x)}p_{model}(x;\theta)$$

In practice:

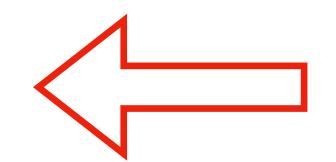
$$rg\max_{\theta} rac{1}{n} \sum_{i}^{n} p_{model}(x^{(i)}; \theta)$$
 $x^{(i)}$ are i.i.d. (independent and identically distributed) samples from $p_{data}(x)$

Monte Carlo Estimation of Expectation

Why can we make this approximation?

Monte Carlo Estimation of Expectation

$$\mathbb{E}_{x \sim p(x)} f(x)$$



$$\mathbb{E}_{x \sim p(x)} f(x) \qquad \frac{1}{n} \sum_{i=1}^{n} f(x^{(i)}), \quad x^{(i)} \sim p(x)$$

In practice, n is often small, like 1 sample

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}f(x^{(i)})\right] = \mathbb{E}_{x\sim p(x)}f(x)$$

$$Var\left[\frac{1}{n}\sum_{i=1}^{n}f(x^{(i)})\right] = \frac{Var(f(x))}{n}$$

Sampling and Evaluation of Distributions

- Some distributions are easy to sample from but hard to compute the probability value (hard to evaluate)
 - Monte Carlo estimation requires this kind of distribution

- Some distributions are easy to compute the probability value (easy to evaluate) but hard to sample from
 - How to sample from a distribution efficiently is a separate topic

MLE is Approximating the Real Distribution

$$\underset{\theta}{\operatorname{arg\,max}\,}\mathbb{E}_{x\sim p_{data}(x)}p_{model}(x;\theta)$$

What is the optimal p_{model} ?

MLE is equivalent to

$$\underset{\theta}{\operatorname{arg\,min}\,} D_{\mathrm{KL}}(p_{data}(x)||p_{model}(x;\theta))$$

 $D_{KL} \geq 0$ is a distance metric between two distributions, it is 0 when the two distributions are identical $D_{\mathrm{KL}}(p(x)||q(x)) = \mathbb{E}_{p(x)}\log\frac{p(x)}{q(x)}$

When data is all the data from the world, then MLE is learning a distribution for the world

Biased/Unbiased Estimator

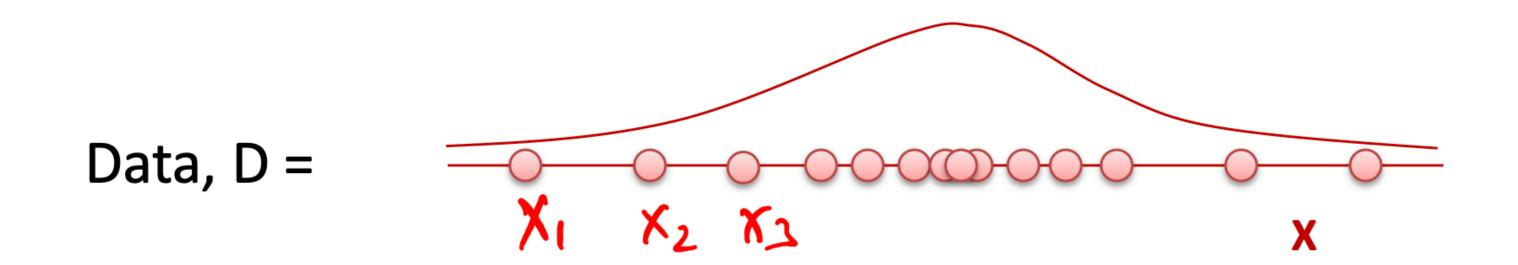
Suppose we want to estimate a true quantity θ^* , and our estimation is $\hat{\theta}$, then we define the bias of the estimation as:

$$bias = \mathbb{E}(\hat{\theta}) - \theta^*$$

When does the estimation converges to the true value when we have infinite data samples?

$$bias \rightarrow 0, \quad Var(\hat{\theta}) \rightarrow 0$$

Learn Parameters from Data with MLE



Approximate the mean and variance of the data

Data are i.i.d.:

- Independent events
- Identically distributed according to Gaussian distribution

MLE for Gaussian Mean and Variance

$$\widehat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

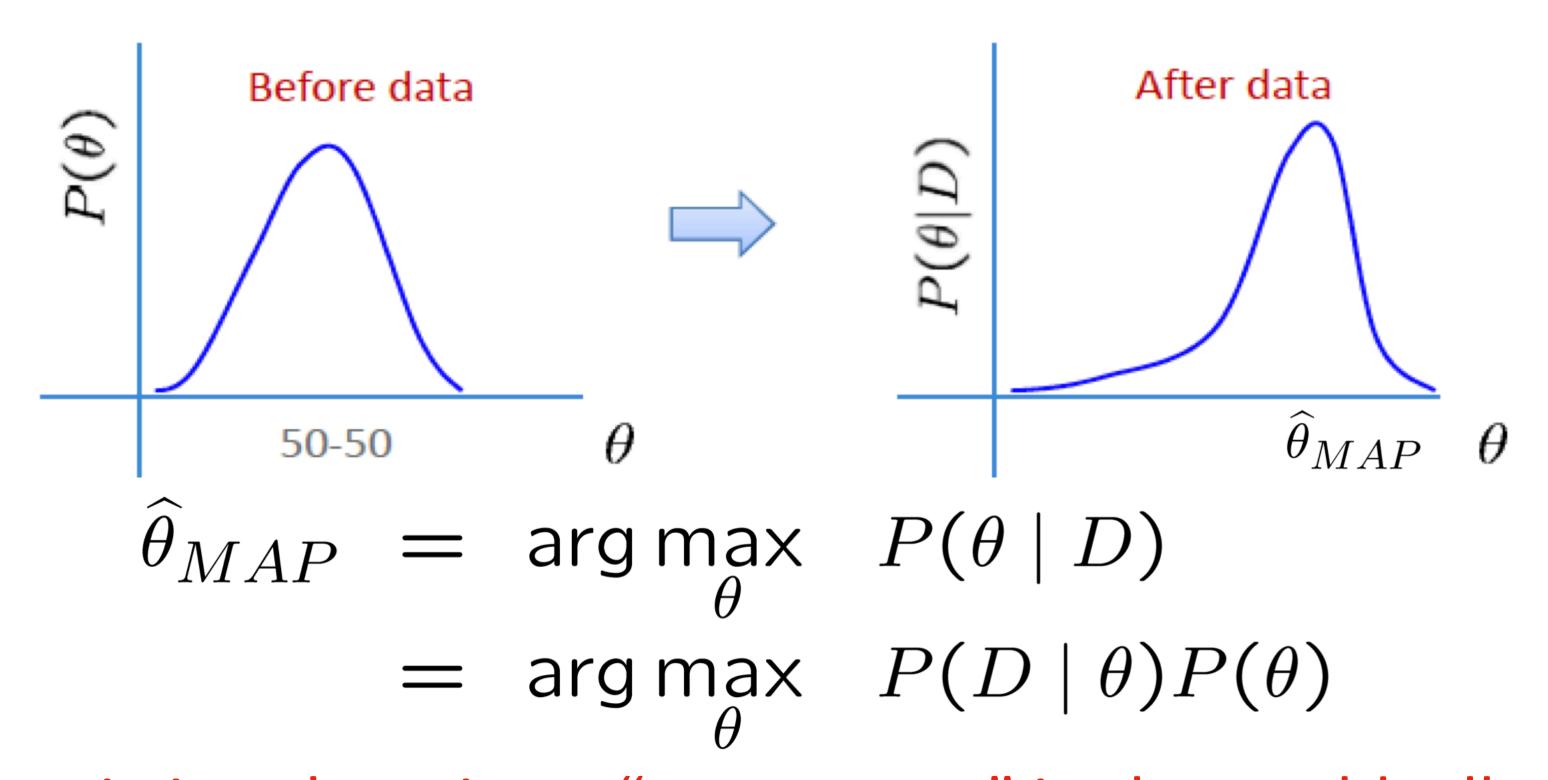
$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Are the estimations biased?

Unbiased estimator:
$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

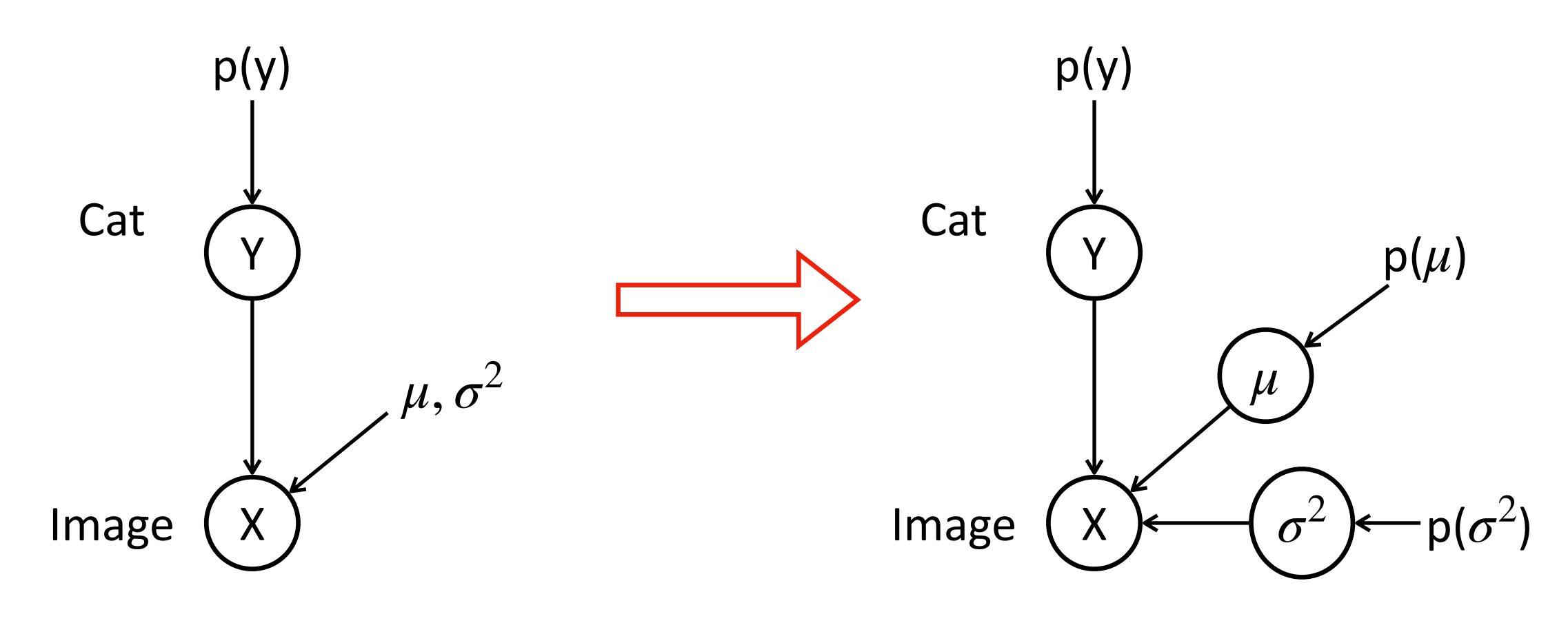
Max A Posterior (MAP) Estimation

Bring prior knowledge to the parameter, define the prior $P(\theta)$. The posterior distribution is $P(\theta \mid D)$. D is the training dataset



Bayesian statistics: there is no "parameters" in the world, all are posterior distributions to estimate

Max A Posterior (MAP) Estimation



Frequentist

Bayesian

How to Choose Prior

- Inject prior human knowledge to regularize the estimate
 - Could learn better if data is limited

- Posterior easy to compute
 - Conjugate prior

Conjugate Prior

If $P(\theta)$ is conjugate prior for $P(D|\theta)$, then Posterior has same form as prior

Posterior = Likelihood x Prior

$$P(\theta | D) = P(D | \theta) \times P(\theta)$$

P(theta)	P(D theta)	P(theta D)
Gaussian	Gaussian	Gaussian
Beta	Bernoulli	Beta
Dirichlet	Multinomial	Dirichlet

MLE vs. MAP

Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

$$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D|\theta)$$

Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and prior belief

$$\widehat{\theta}_{MAP} = \arg \max_{\theta} P(\theta|D)$$

$$= \arg \max_{\theta} P(D|\theta)P(\theta)$$

When are they the same?

Thank You! Q&A