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Recap: Generative Models
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Recap: Generative Models

p(z|y)p(y)
p(z)

p(x) = ) p(x.y) = ) p|y)p®)
y Y

p(y|z) =

If our goal is to predict y, the distribution is often written as:

p(y|x) < plx|y)p(y)

argmax p(y|r) = argmax P(zly)p(y)
’ v p()

= arg mjl,X p(x\y)p(y)
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Recap: Generative Models
Compared to Discriminative Models

Pros:

Generative models can generate data (generation, data augmentation)

Inject prior information through the prior distribution

May be learned in an unsupervised way when y is not available

Modeling data distribution is a fundamental goal in Al

Cons:

Often underperforms discriminative models on discriminative tasks
because of stronger assumptions on the data



Naive Bayes
Binary classification: y € {0,1}, x is discrete

Consider an email spam detection task, to predict whether the email is
spam or not

How to represent the text?

if an email contains the j-th word of the dictionary, then we will set X; = 1: otherwise, we let X; = 0

-] a
0 aardvark
0 aardwolf vocabulary
€r = . .
1 buy
j : Dimension is the size of the dictionary
0 Zygmurgy



Email Spam Classification

-1 a
0 aardvark
0 aardwolf o
| Suppose the dictionary has 50000 words,
L buy how many possible x?
i O i .zygmurgy

Naive Bayes assumption: x;'s are conditionally independent given y

Foranyiandj, p(x;|y) = p(x;|y, Xj)



Email Spam Classification

p(x1, ..., Z50000|Y) Autoregressive

Y, 131)P($3|y, I, iEz) " ‘P($5oooo|y, L1,y ... ,5649999)

= p(z1|ly)p(z2|y)p(Z3]Y) - - - P(T50000|Y)

Parameters

Giy=1 =PX; =1y =1), ¢, =px;=11y=0), ¢,=pQy=1)
50000 x 2 + 1 parameters (dict size is 50000)
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Maximum Likelihood Estimation

n

L(dy, Djly=0, Pjly=1) = Hp(x(i)a y(i))

1=1

Yy He) = 1AyD =1)

> iy H{y® =1} Count the occurrence of x; in spam/
n (8) _ (6) — . .
2im 112" =1AYY =0} o0 snam emails and normalize

> e Hy® =0}
Z?:l 1{3/(2) =1}

n



Prediction

_ plzly=1)p(y =1)

g
)
|
-
&
|

p(z)

(T pasly = 1)) ply = 1)

(T p(zsly = 1)) ply = 1) + (T, plosly

Naive Classifier

)) p(y

0)



Laplace Smoothing

What if we never see the word “learning” in training data but “learning”

exists in the test data?

| Suppose the index in the dictionary for
S el =1Ay® =1}

b > oo Hy® =1} lea rning 1S g
0 Z?:ll{xg‘i)zl/\y(i)zo} p(xq — 1 ‘y _ 1) _ O
jly=0 — _ .
> iy H{y® =0}
y p(xqzl‘y:()):()
ply =1lz) = p(zly = 1)p(y = 1)

p(z)




Laplace Smoothing

Take the problem of estimating the mean of a multinomial random
variable z taking values in {1, ..., k}. Given the independent
observations {z(l), ---,z(”)}

Pj = p(z =7) b = Z?zl 1{Z(i) =7}

(g

U Why adding k to the

- 1+ Z?:l 1{Z(i) — ]} denominator?

7 k+n
) 1Y e =1AyD =1}
In the email spam classification case: = 2+ i Hy® =1}
L3 e = 1Ay = 0)
Pjly=0 =

2+ 2?21 1{?/@ = 0}
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Parameter Estimation: MLE and MAP



Maximum Likelihood Estimation (MLE)

Suppose p,...(x) is the real data distribution, p, ...(x; @) is our model
parameterized by &

|

arg mmax tazrvpdata(x)pmodel (QZ‘; ‘9)
0

In practice:
x¥ arei.i.d. (independent and

n
arg max l Z Dimodel (33(7/)’ 6)) identically distributed) samples from
0 n i pdata(x)
Monte Carlo Estimation of Expectation

Why can we make this approximation?

13



Monte Carlo Estimation of Expectation

- 1S o) (i)
*’wwp(a?)f(x) <:| n;f($ ), @ p(x)

In practice, n is often small, like 1 sample
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Sampling and Evaluation of Distributions

Some distributions are easy to sample from but hard to compute the
probability value (hard to evaluate)

-~ Monte Carlo estimation requires this kind of distribution

Some distributions are easy to compute the probability value (easy to
evaluate) but hard to sample from

-~ How to sample from a distribution efficiently is a separate topic
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MLE is Approximating the Real Distribution

~

arg imax txrvpdata(:c)pmodel (CE; (9)
0

What is the optimalp, .., ?

MLE is equivalent to

afgemiﬂ DKL (pdata (w) | ‘pmodel ($; 6)))

Dy; > O is a distance metric between two distributions, it is 0 when the two

distributions are identical Dx1(p(z)]|g(z)) = Epa) log pg?
g\xr

When data is all the data from the world, then MLE is learning a

distribution for the world
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Biased/Unbiased Estimator

Suppose we want to estimate a true quantity 6%, and our estimation is @,
then we define the bias of the estimation as:

bias = E(0) — 6%

When does the estimation converges to the true value when
we have infinite data samples?

bias — O, Var(@) — 0
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Learn Parameters from Data with MLE

T

Data, D = O B B A A S /AN A6 A O O
Xi X Xa X

Approximate the mean and variance of the data

Data are i.i.d.:
— Independent events

— Identically distributed according to Gaussian distribution
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MVLE for Gaussian Mean and Variance

1 T
AVLE = — ) @
ni—1
. 1 & N2
ONMTE — ;Z(% —M)
i=1

Are the estimations biased?

1 n
Unbiased estimator: 6% = — Z (x; — ,l2)2
i=1
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Max A Posterior (MAP) Estimation

Bring prior knowledge to the parameter, define the prior P(€). The posterior
distribution is P(@| D). D is the training dataset

Before data After data
s 3
R —> =
Q
50-50 0 §MAp )
Oryap = arg m@ax P(0 | D)
= arg m@ax P(D|0)P(0)

Bayesian statistics: there is no “parameters” in the world, all are posterior

distributions to estimate .



Max A Posterior (MAP) Estimation

p(y) p(y)

Cat Cat
:: p(1)
u,o” 0
e O

Frequentist Bayesian
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How to Choose Prior

Inject prior human knowledge to regularize the estimate
~ Could learn better if data is limited

Posterior easy to compute
~ Conjugate prior
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Conjugate Prior

If P(O) is conjugate prior for P(D|0), then Posterior has
same form as prior

Posterior = Likelihood x Prior

P(O|D) = P(D|O) x P(O)

P(theta) P(D|theta) P(theta|D)
Gaussian Gaussian Gaussian
Beta Bernoulli Beta

Dirichlet Multinomial Dirichlet
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MLE vs. MAP

Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

Ori7 = arg m@ax P(D|0)

Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and
prior belief

Oryap = arg m@ax P(0|D)

— arg m@ax P(DI|0)P(60)

When are they the same?
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Thank You!
Q& A
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