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Linear Independence

A set of vectors {x1,x2,...x,} CR™ is said to be (linearly) dependent if one vector belonging
to the set can be represented as a linear combination of the remaining vectors; that is, if

n—1
Xn = E :aiXi
=1

for some scalar values ay,...,a,-1 € R; otherwise, the vectors are (linearly) independent.



Linear Independence

Example:
- - h
X1 = 2 Xy = 1
— 3 — — 5 —
are linearly dependent because x3 = —2x1 + x».




Rank of a Matrix

@ The column rank of a matrix A € R™*" is the largest number of columns of A that
constitute a linearly independent set.

@ The row rank is the largest number of rows of A that constitute a linearly independent set.

@ For any matrix A € R™*" it turns out that the column rank of A is equal to the row rank

of A (prove it yourself!), and so both quantities are referred to collectively as the rank of A,
denoted as rank(A).



Properties of Rank

@ For A€ R™" rank(A) < min(m, n). If rank(A) = min(m, n), then A is said to be full
rank.

o For A€ R™" rank(A) =rank(A').

@ For Ae R™P, B € RP*" rank(AB) < min(rank(A), rank(B)).

@ For A,B € R™*" rank(A + B) < rank(A) + rank(B).



The Inverse of a Square Matrix

o The inverse of a square matrix A € R™" is denoted A~!, and is the unique matrix such
that
ATTA=1=AA"L

o We say that A is invertible or non-singular if A=—! exists and non-invertible or singular
otherwise.

@ In order for a square matrix A to have an inverse A=1, then A must be full rank.

@ Properties (Assuming A, B € R"™" are non-singular):
> (A_]‘)_]‘ — A
» (AB)"1 = B~1A"!
» (A™1)T = (AT)~L. For this reason this matrix is often denoted A~ .
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Orthogonal Matrices

e Two vectors x, y € R" are orthogonal if x"y = 0.
@ A vector x € R" is normalized if ||x|[2 = 1.

@ A square matrix U € R"*" is orthogonal if all its columns are orthogonal to each other
and are normalized (the columns are then referred to as being orthonormal).

@ Properties:
» The inverse of an orthogonal matrix is its transpose.

Uru=1=uUU".

» Operating on a vector with an orthogonal matrix will not change its Euclidean norm, i.e.,
|Ux|l2 = [[x]2

for any x € R"”, U € R"™" orthogonal.



Span and Projection

@ The span of a set of vectors {x1,x2,...x,} is the set of all vectors that can be expressed as
a linear combination of {xq,...,x,}. That is,

span({x1,...Xp}) = {v V= Za;x;, aj € R} .

=1

@ The projection of a vector y € R™ onto the span of {xi,...,x,} is the vector
v € span({xy,...Xn}), such that v is as close as possible to y, as measured by the
Euclidean norm ||v — y/||».

Proj(y; {X17 o XN}) — a’rgnliHVESpan({xl,...,xn}) Hy o VH2'



Null Space

The nullspace of a matrix A € R™*", denoted N (A) is the set of all vectors that equal 0 when
multiplied by A, i.e.,
N(A) ={x e R": Ax = 0}.
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Determinant

Let A€ R™", A\ € R(n—1)x(n=1) he the matrix that results from deleting the ith row and
Jjth column from A.
The general (recursive) formula for the determinant is

Al

> (=1)Haj|A\j|  (foranyjel,... n)
=1

> (—1)Hay|A\j|  (foranyi€l,..., n)
j=1
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Determinant: Example

However, the equations for determinants of matrices up to size 3 x 3 are fairly common, and it is
good to know them:

la11]] = a1
- ai1 a;
= a11d2 — aipani
a1 axn

dil1 di12 4di3
d21 d22 d23
d31 d32 d33

d11d224a33 + a12a234a31 + 813421432
—d11a23432 — a124a21433 — a13422431
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The Determinant

The determinant of a square matrix A € R"*", is a function det : R"*" — R, and is denoted
|A| or det A.

Given a matrix

N a N

consider the set of points S C R” as follows:

n
5:{vER”:v:Za,-a,-whereOSa,-g1,i:1,...,n}.
i=1

The absolute value of the determinant of A is a measure of the “volume” of the set S.
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The Determinant

For example, consider the 2 x 2 matrix,

A=

N W

W =

Here, the rows of the matrix are

14
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The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is 1, |/| = 1. (Geometrically, the volume of a unit
hypercube is 1).

2. Given a matrix A € R if we multiply a single row in A by a scalar t € R, then the
determinant of the new matrix is t|A|, (Geometrically, multiplying one of the sides of the set
S by a factor t causes the volume to increase by a factor t.)

3. If we exchange any two rows a/ and aJ-T of A, then the determinant of the new matrix is
—|A|, for example
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The Determinant: Properties

For A€ R™" |Al = |AT].
For A, B € R™", |AB| = |A||B|.

For A€ R™" |A| =0 if and only if A is singular (i.e., non-invertible). (If A is singular then
it does not have full rank, and hence its columns are linearly dependent. In this case, the set
S corresponds to a “flat sheet” within the n-dimensional space and hence has zero volume.)

For A € R™" and A non-singular, |[A7| = 1/|A].
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Eigenvalues and Eigenvectors

Given a square matrix A € R"*", we say that A\ € C is an eigenvalue of A and x € C" is the
corresponding eigenvector if

Ax = Ax, x # 0.

Intuitively, this definition means that multiplying A by the vector x results in a new vector that
points in the same direction as x, but scaled by a factor \.
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Gradient over Matrix

Suppose that f : R™*" — R is a function that takes as input a matrix A of size m x n and
returns a real value. Then the gradient of f (with respect to A € R™*") is the matrix of partial
derivatives, defined as:

OfA) OfA) | of(A) -
af( A) af( A) gﬁi\“)
VAf(A) c RM*Xn — 0A21 0A  0Az,
o ora | orn
. O0A 1 OA OAmn -
l.e., an m X n matrix with A
Of(A
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Gradient over Vector

Note that the size of V4f(A) is always the same as the size of A. So if, in particular, A is just a

vector x € R"

- Of(x) T
Ox1
Of (x)

Vxf(x) = 8&

8f-(x)

L OXxp -

It follows directly from the equivalent properties of partial derivatives that:
o Vi(f(x)+ &(x)) = Vxf(x) + Vig(x).
@ For t € R, Vi(t f(x)) = tVxf(x).
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The Hessian

Suppose that f : R” — R is a function that takes a vector in R"” and returns a real number.
Then the Hessian matrix with respect to x, written V2f(x) or simply as H is the n x n matrix

of partial derivatives,

- 0%f(x)  0%f(x) 0%f(x) -
3x12 O0x10X> Ox10Xn
0%f(x)  9%f(x) 0% f (x)
2
v)2< f( X) c RMXN — Ox20x1 Ox3 Ox20xn
0%f(x)  0%f(x) o 0°f(x)
L OxpOx1  OxnOxo Oxz  _

Note that the Hessian is always symmetric, since

0°f(x) B 0°f(x)
8x,-8><j N ij(‘)x,- .
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Gradients of Linear Functions

For x € R”, let f(x) = b" x for some known vector b € R". Then

SO

Of (x) 0 k B

From this we can easily see that Vi b' x = b. This should be compared to the analogous
situation in single variable calculus, where 8/(0x) ax = a.
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Common Gradient Formula

V.b'x=05b
Vb 'x =0
VixT Ax = 2Ax (if A symmetric)

V2xT Ax = 2A (if A symmetric)
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Least Squares

e Given a full rank matrix A € R™*", and a vector b € R™ such that b € R(A), we want to
find a vector x such that Ax is as close as possible to b, as measured by the square of the
Euclidean norm ||Ax — b|5.
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Outline

Probability Review
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Basic Concepts

@ Performing an experiment — outcome

e Sample Space (S): set of all possible outcomes of an experiment
o Event (E): a subset of S (E C S)

e Probability (Bayesian definition)

A number between 0 and 1 to which we ascribe meaning
i.e. our belief that an event E occurs

@ Frequentist definition of probability

P(E) = lim ™E)

n— o0 n
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Axiom 1: 0<P(E)L1
Axiom 2: P(S)=1

E C F, then P(E) < P(F)
P(EUF) = P(E)+ P(F) — P(EF) (Inclusion-Exclusion Principle)

General Inclusion-Exclusion Principle:

P (U Ef) - En:(—l)r+1 2. P(EyEp.E;)
i=1 r=1

i]_<"°<ir

Equally Likely Outcomes: Define S as a sample space with equally likely outcomes. Then

P(E) = %
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Conditional Probability and Bayes’ Rule

For any events A, B such that P(B) # 0, we define:
P(AN B)
P(B)

P(A| B) :=

Let's apply conditional probability to obtain Bayes' Rule!
P(BNA) P(ANB)
P(A)  P(A)
P(B)P(A | B)
P(A)

P(B|A)=

Conditioned Bayes’ Rule: given events A, B, C,
P(B|A C)P(A| C)

P(A|B,C) = (B | C)
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Law of Total Probability

Let By, ..., B, be n disjoint events whose union is the entire sample space. Then, for any event A,

P(A) = Z P(AN B))
=1

=) _P(A| B)P(B)

We can then write Bayes' Rule as:
P(Bk)P(A | B)
P(A)

P(Bx)P(A | Bx)
>.i=1 P(A| Bi)P(Bi)

21=1

P(Bx | A) =

28



Chain Rule

For any n events Ay, ..., A,, the joint probability can be expressed as a product of conditionals:

P(Al NAN...N An)
= P(A1)P(Ax | A1)P(A3 | Ao N A1)...P(A, | Ap_i NA_2N .. N A7)
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Independence

Events A, B are independent if
P(AB) = P(A)P(B)

We denote this as A 1 B. From this, we know that if A L B,
P(ANnB) P(A)P(B)

PATE) ="y T TR

- P(4)

Implication: If two events are independent, observing one event does not change the probability
that the other event occurs.
In general: events Aj, ..., A, are mutually independent if

P(()A) =]] P(A)

€S €S
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Random Variable

A random variable X is a variable that probabilistically takes on different values. It maps
outcomes to real values
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Probability Mass Function (PMF)

Given a discrete RV X, a PMF maps values of X to probabilities.
px(x) := p(x) := P(X = x)

For a valid PMF, » /) Px(X) = 1.

32



Cumulative Distribution Function (CDF)

A CDF maps a continuous RV to a probability (i.e. R — [0, 1])

Fx(a) := F(a) := P(X < a)

A CDF must fulfill the following:

@ limy__o Fx(x) =0

@ limy_ o Fx(x) =1

o If a < b, then Fx(a) < Fx(b) (i.e. CDF must be nondecreasing)
Also note: P(a < X < b) = Fx(b) — Fx(a).
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Probability Density Function (PDF)

PDF of a continuous RV is simply the derivative of the CDF.

de(X)

fx(x) = f(x) := ™
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Expectation

Let g be an arbitrary real-valued function.
e If X is a discrete RV with PMF px:

g(X)] = ) &(x)px(x)

x€ Val(X)
@ If X is a continuous RV with PDF fx:
(0= [ gl)fx(x)x

Intuitively, expectation is a weighted average of the values of g(x), weighted by the probability
of x.
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Conditional Expectation

X [ Y] =2 cevaix) XPx|y(x]y) is a function of Y.
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Properties of Expectation

For any constant a € R and arbitrary real function f:
o Ela] = a
o Elaf(X)] = aE[f(X)]

Linearity of Expectation
Given n real-valued functions f(X), ..., fa(X),

n

D H(X)] =) E[fi(X)]
=1

=1
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Example

El Goog sources two batteries, A and B, for its phone. A phone with battery A runs on average
12 hours on a single charge, but only 8 hours on average with battery B. El Goog puts battery A
in 80% of its phones and battery B in the rest. If you buy a phone from El Goog, how many
hours do you expect it to run on a single charge?
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Variance

The variance of a RV X measures how concentrated the distribution of X is around its mean.

Var(X) := E[(X — E[X])?]
= E[X?] - E[X

Interpretation: Var(X) is the expected deviation of X from E[X].
Properties: For any constant a € R, real-valued function f(X)

o Varla] =0
o Varl[af(X)] = a*Var[f(X)]
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Example Distributions

Distribution PDF or PMF Mean | Variance
. D, if x=1 B
Bernoulli( p) 1—p ifx=0. p p(l— p)
Binomial(n, p) (Z)pk(l —p)" K for k=0,1,....n np | np(l— p)
- — \k—1 _ 1 1—p
Geometric(p) pg k p)<— for k=1,2,... p =
Poisson(\) e A for k=0,1,... A A
] 2
Uniform(a,b) | = for all x € (a, b) a+b b_2)
X— [ 2
Gaussian(u, o2) - 127Te 277 for all x ¢ (—o0,0) | W 02
Exponential(\) | Ae= for all x > 0,\ >0 % %
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Joint and Marginal Distributions

e Joint PMF for discrete RV's X, Y:
pXY(ny) — P(X:X7 Y:y)

Note that ZxEVaI(X) ZyEVaI(Y) PXY(X,y) =1

@ Marginal PMF of X, given joint PMF of X, Y

px(x) = > _ pxv(x,y)

41



Joint and Marginal Distributions

e Joint PDF for continuous RV's Xi, ..., X;:

0"F(x1,...Xp)
0Xx10X2...0Xp,

F(X1y ey Xp) =

Note that le sz an f(x1,y ..., Xp)dx1...dx, = 1
e Marginal PDF of Xj, given joint PDF of Xi, ..., X;:

fX1(X1):/ / f(Xl,...,Xn)dXQ...an
X2 Xn

42



Expectation for multiple random variables

Given two RV's X, Y and a function g : R> = R of X, Y,
@ for discrete X, Y:

(X, = > D glxy)pxy(xy)

x€eVal(x) yeVal(y)

@ for continuous X, Y:

Elg(X, Y)] = /_OO /_OO g(x,y)fxy(x,y)dxdy
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Covariance

Intuitively: measures how much one RV's value tends to move with another RV's value. For
RV's X, Y:

Cov[X, Y] :=E[(X — E[X])(Y — E[Y])]
1[XY] — E[X]E[Y]

o If Cov|[X, Y] <0, then X and Y are negatively correlated
o If Cov|X,Y] >0, then X and Y are positively correlated
o If Cov[X, Y] =0, then X and Y are uncorrelated

44



Variance of two variables

Var[X + Y| = Var|X] + Var|Y] + 2Cov|X, Y]
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Conditional distributions for RVs

Works the same way with RV's as with events:
@ For discrete X, Y:

pXY(X7 y)
X)) =
pY|X(y| ) PX(X)
@ For continuous X, Y:
fXY(Xay)
£
Y\X(y| ) fX(X)

@ In general, for continuous Xi, ..., X;:

Xy Xo.... X, (X1, X2, ..., Xn)

D, X (X1 X2s o Xn) = =20 AL
2,...,Xn AR
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Bayes’ Rule for RVs

Also works the same way for RV's as with events:
@ For discrete X, Y:

px|y (x|y)py(y)

py|x(y]x) =
rxly) >_yreval(y) Pxy (XY )py (y')

@ For continuous X, Y:

iy Ix) = fxy (x|y)fy (y)
YT 2 By (v A () dy

— OO
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Random Vectors

Given n RV's Xi, ..., X,, we can define a random vector X s.t.

Note: all the notions of joint PDF/CDF will apply to X.

Given g : R" — R™, we have:

g(x) =

g1(x)
g2(x)

_gm-(X)_

Ulg(X)] =

48

<
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~

4

4

V]

[g1(X)]
[g2(X)]

‘[gn;(X )|



Covariance Matrices

For a random vector X € R", we define its covariance matrix X as the n X n matrix whose
ij-th entry contains the covariance between X; and X;.

-COV[Xl,Xl] c . COV[Xl,Xn]-

Cov[Xn, X1] ... Cov[Xp, Xa]

applying linearity of expectation and the fact that Cov|[X;, X;| = E[(X; — E[Xi])(X; — E[Xj])], we
obtain

¥ =E[(X - E[X])(X —E[X])']

Properties:

@ 2 is symmetric and PSD
o If Xj L X;forall i,j, then X = diag(Var|Xi], ..., Var[X,])
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Multivariate Gaussian

The multivariate Gaussian X ~ N (u,X), X € R™

1 1 Tv—1
pLxi p, ) = ,,exp(——x—u 2 X—u)
i) det(¥)(27)? A
Gaussian when n=1.
1 1
. .
p(x; p,0°) = exp X — b
( ) 0'(27'(')% ( 2‘72( ) )

Notice that if ¥ € R, then ¥ = Var[Xi] = 02, and so
¥ 1= 1 and det(¥)z = o
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MV Gaussian Visualization

10
2= 0 1
p=[0 0]
0.7 0
2= "9 07
pw=[0 0]
1.8 0
2= 0 1.5
p=[0 0]

Effect of changing variance
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MV Gaussian Visualization

p=[0 0]

I1f Var[Xl] 75 Var[Xz]:
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MV Gaussian Visualization

N
o
N

1 0.5
2= 05 i
pw=[0 0]

x
N
o
N
no
o
no

If X1 and X5 are positively correlated:
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MV Gaussian Visualization

N
o
N

x
N
o
N
ro
o
n

X1 - X1

If X1 and X, are negatively correlated:
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The purpose of computation is
insight, not numbers.
- Richard Hamming

Vectors Vectors | Chapter 1, Essence of linear algebra

https://www.youtube.com/@3bluelbrown/courses

Linear combinations, span, and basis vectors | Chapter 2, Essence of linear algebra

Linear Linear transformations and matrices | Chapter 3, Essence of linear algebra
transformations

—_—

3Blue1Brown-®°

@3blue1brown - 5.88M subscribers - 172 videos

10:59

Matrix Matrix multiplication as composition | Chapter 4, Essence of linear algebra
multiplication
X —»

—_—

My name is Grant Sanderson. Videos here cover a variety of topics in math, or adjacent fiel... >

10:04 3blue1brown.com and 7 more links

3D Three-dimensional linear transformations | Chapter 5, Essence of linear algebra
transformations

L

Q Subscribed v

4:46

Dl tsinesins:heinmem | he determinant | Chapter 6, Essence of linear algebra

Inverse matrices, column space and null space | Chapter 7, Essence of linear algebra

Inverse matrices

 d
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Supervised Learning

@ A hypothesis or a prediction function is function h: X — )

3.5 1 X

3.0 ' X X

2.5 - X
.g 2.0 - * X\
8« « % 15th sample

X xX
(x(15)’y(15))

1.0 - X
)4 X

0 500 $1000 1500 2000 2500 3000
square feet

x = 800
y =7
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Supervised Learning
A hypothesis or a prediction function is function h : X — Y

A training set is set of pairs {(xV),y()), ..., (x(" y")}
s.t. xU) € X and y(i) c ) for i - 1,....n.

Given a training set our goal is to produce a good prediction function A

If ) is continuous, then called a regression problem

If ) is discrete, then called a classification problem
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Supervised Learning

¢ How to define “good” for a prediction function?
- Metrics / performance

4.0

3.5 - X
3.0 - " X %
025 ;
920! X I
515 « X "~ 15th sample
x (15) 4,(15)
| X x (Y
000 500 Ilo'oo 1500 2000 2500 3000
square feet
x = 800
N . L, y=uyx
|y —y*| I(g = yx) = |
0 otherwise

A\

y is the prediction, y * is the truth
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Supervised Learning

How to define “good” for a prediction function?
- Metrics / performance
-~ Good on unseen data

Validation dataset is another set of pairs {(x(l) A(l)), e, ()Ac(m), A(m))}

Does not overlap with training dataset
4.0
3.5 1
3.0 1 X 4 %

2.5 -

¥ p 4
= 2.0- %
S .c. y .
o / Which curve to choose?

0.5

0.0
0 500 £1000 1500 2000 2500 3000
square feet
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Supervised Learning

How to define “good” for a prediction function?
~ Metrics / performance
~ Good on unseen data

Validation dataset is another set of pairs {(A(l), A(l)), v, (JAC(m), A(m))}

Does not overlap with training dataset

Test dataset is another set of pairs { (", 31, ..., G, D))
Does not overlap with training and validation dataset
Completely unseen before deployment

. , o Realistic setting
Hyperparameter tuning is a form of training
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Supervised Training

Train Validation Test

Not only for supervised learning
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Example: Regression using Housing Data

63 Example from Stanford CS229



SalePrice Lot.Area

4 189900
S 195500
9 189000
10 175900
12 180400
22 216000
36 376162
47 320000
55 216500
56 185088

13830
9978
7500

10000
8402
7500

12858

13650
7851

8577

64

Example Housing Data

350000 -

300000 -

250000 -

200000 -

0o @
@
.‘ o @

8000 10000 12000 14000
lot




Represent /1 as a Linear Function

h(x) = 0y + 01x1 is an affine function

Popular choice

The function is defined by parameters ¢, and 0,, the function space is
greatly reduced

65



Simple Line Fit

350000
300000
250000

200000

T T T
8000 10000 12000 14000

lot
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More Features

size bedrooms lot size Price
x(1) | 2104 4 45k  y(1) | 400
x(2) | 2500 3 30k y(@ | 900

What's a prediction here?

h(X) = 0y + O1x1 + Orx0 + O3x3.

With the convention that xg = 1 we can write:

3
h(x) = Z 0 x;
J=0
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Vector Notations

size bedrooms lot size Price
x) 12104 4 45k y) 1400
x(2) | 2500 3 30k y® | 900

We write the vectors as (important notation)

(1)
0o X(()l) 1
0 = 01 and x!) = X11 = | and y!) = 400
02 s\ 4
0 X§1) 45

We call 6 parameters, x{/) is the input or the features, and the
output or target is y{). To be clear,

(x,y) is a training example and (x\"), y{1)) is the i example.

We have n examples. There are d features. x% and @ are d+1 dimensional (since x5 = 1)
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Vector Notation of Prediction

@
350000 A
i
&
300000 -
250000 -
200000 -
i &
® o ®

8000 10000 12000 14000
lot

d
hy(x) = 2 (9jxj =x'6
j=0

We want to choose @ so that hy(x) =~ y
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Loss Function

350000 -

300000 -

250000 -

200000 -

8000 10000 12000 14000
lot

0 We want to choose 0 so that hy(x) = y

|

How to quantify the deviation of /i,(x) fromy
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d
hy(x) = Z Q,-xj =x'6
j=0

Choose

Least Squares

350000 -
300000 -
250000 +
oo
200000 - -
@ o

8000 10000 12000 14000

lot

§ = argmin J(6).
0

71

1

J(0) = 3

n

> (he(X(i)) = y(i)>2

=1



Solving Least Square Problem

Direct Minimization
d 1 < | A\ 2
hy(x) = Hjxj = x'6 J(6) = = Z (he(x(')) _ y(1)>

. 2 “
j=0 i=1

§ = argmin J(0).
0
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Solving Least Square Problem

1 _, -
Vei(Xe — )" (X0 —79)

Vo ((X0)"X60 — (X0)"5 — i (X6) + §"5)

VoJ (6)

Vo (0"(XTX)0 — ¢ (X0) — §"(X0))

N DN N =N -

Vo (07 (XTX)0 —2(X"9)"6)
= —(2X'X6-2X"7)
— XTx0— X7y
Normal equations X~ X6 = X1 o= (XTX)'XTy.
When is X! X invertible? What if it is not invertible?
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Thank You!
Q& A
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